Gated DeltaNet: гибридная архитектура нейронных сетей с управлением памятью.

Gated DeltaNet – экспериментальная архитектура, разработанная NVIDIA для управления памятью в контексте линейных трансформеров, которая может решить проблемы с забыванием в моделях, обрабатывающих длинные последовательности данных.

Gated DeltaNet предлагает использовать одновременно дельта-правило и гейтинг. Дельта-правило обновляет память модели, заменяя устаревшую информацию на новую, а механизм гейтинга удаляет ненужную информацию из памяти, чтобы она не мешала модели работать эффективно.

 Gated DeltaNet: гибридная архитектура нейронных сетей с управлением памятью.

Архитектура Gated DeltaNet была разработана на основе алгоритма, который параллелит вычисления дельта-правила с использованием представления WY и оптимизирует работу с GPU на уровне тензорных ядер.

Перфоманс-тестирование Gated DeltaNet проводилось на бенчмарках языкового моделирования, ризонинга, контекстного извлечения, экстраполяции длины и понимания объемного контекста. 

Модель Gated DeltaNet превзошла Mamba2 и DeltaNet на всех этих тестах. Например – улучшенная точность на задачах S-NIAH-2 и S-NIAH-3, где Gated DeltaNet показала более эффективное управление памятью по сравнению с DeltaNet и Mamba2 и превосходство в задачах ризонинга. 

Гибридные архитектуры, сочетающие слои Gated DeltaNet с вниманием скользящего окна или слоями Mamba2 повысили эффективность обучения и производительность моделей.

Тестовые GatedDeltaNet-H1 и GatedDeltaNet-H2 дали еще более высокие результаты, используя комбинации Gated DeltaNet + SWA и Mamba2 + Gated DeltaNet + SWA соответственно.

 Gated DeltaNet: гибридная архитектура нейронных сетей с управлением памятью.

Gated DeltaNet показала самые низкие показатели перплексии при экстраполяции на длинные последовательности до 20 тыс. токенов и продемонстрировала превосходные способности в извлечении информации, обучении в контексте и отслеживании состояния в задачах LongBench. 

🔸Практическая реализация обучения Gated DeltaNet на Pytorch доступна в репозитории на Github 

📌Лицензирование:

🟢Некоммерческое использование: Nvidia Source Code License-NC

🟠Коммерческое использование: по запросу через форму NVIDIA Research Licensing 

🟡Arxiv 

🟡GitHub 

+1
0
+1
0
+1
0
+1
0
+1
0

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *