ICRT : Внутриконтекстное обучение имитации действия с помощью предсказания след…
In-Context Robot Transformer (ICRT) – модель, которая позволяет роботу выполнять новые задачи, интерпретируя контекстную информацию, предоставленную во время демонстрационной фазы, без обновления параметров базовой политики.
ICRT представляет собой причинно-следственный трансформер, который выполняет автоматический прогноз сенсомоторных траекторий без использования лингвистических данных или функции вознаграждения. Он позволяет гибко и без обучения выполнять новые задачи на основе наблюдений изображений, действий и состояний, собранных с помощью телеопераций человека.
Модель состоит из трех частей: предварительно обученного кодировщика изображений, серии проекторов для каждой из входных модальностей и каузального трансформера:
Для предварительного обучения модели использовался датасет DROID и созданный вручную мультизадачный датасет ICRT-Multi-Task (ICRT-MT – 1098 траекторий, 26 задач с 6 примитивами), который использовался в этапе дообучения.
Результаты экспериментов показывают, что ICRT способен обобщать незнакомые задачи и объекты, даже в средах, которые отличаются от демонстрационных.
# Create & activate venv
conda create -n icrt python=3.10 -y
conda activate icrt
# Install torch
conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia
conda install -c conda-forge ffmpeg
# Clone the Repository
git clone https://github.com/Max-Fu/icrt.git
cd icrt
# Install required packages
pip install -e .
# Install git-lfs
sudo apt install git-lfs
git lfs install
# Download checkpoints
git clone git@hf.co:mlfu7/ICRT checkpoints
Пример инференса приведен в ноутбуке inference.ipynb. Перед его запуском обязательно ознакомьтесь с рекомендациями по загрузке и созданию собственного датасета.