Jamba 1.5: Семейство моделей на архитектуре SSM-Transformer с большим контекстн…
AI21 Labs опубликовала в открытом доступе семейство моделей Jamba 1.5. Модели позиционированы для использования в бизнесе для задач анализа документов, рабочих процессов RAG, поддержки клиентов и обладают возможностями вызова функций, структурированного вывода (JSON) и генерации текстовых данных.
Семейство демонстрирует хорошую управляемость в длительном контексте, скорость и качество. Это первый кейс успешного масштабирования не трансформерной модели до уровня качества топовых открытых моделей.
Архитектура Jamba состоит из гибридного сочетания Transformers и Mamba, что позволило создать модели, которые требуют меньший объем VRAM, чем трансформерные аналоги и могут обрабатывать контексты длиной до 140 тысяч токенов на одном GPU в квантованной версии.
Чтобы сделать модели удобными в использовании, была разработана новая техника квантования ExpertsInt8. Она квантует только веса, которые являются частью слоев MoE, и сохраняет их в формате INT8.
ExpertsInt8 быстрее других методов квантования, не требует калибровки и дает возможность использования BF16 для хранения больших активаций и позволяет загружать Large модель на одном узле из 8 GPU.
Запуск моделей возможен на платформах AI21 Studio, Google Cloud, Azure, Hugging Face, NVIDIA NIM.
Протестировать возможности обеих моделей можно онлайн в сервисе AI21 Studio .
Доступен вход с Gmail и Github, на бесплатный тестовый период дается 10$ на три месяца при тарификации: