OpenAI лучшая модель для генерации видео. Технический отчет Sora.

Вот что вам нужно знать о лучшей архитектуре модели преобразования текста в видео.

𝟭. 𝗗𝗮𝘁𝗮 𝗥𝗲𝗽𝗿𝗲𝘀𝗲𝗻𝘁𝗮𝘁𝗶𝗼𝗻: Sora преобразует визуальные данные в пространственно-временные патчи (spacetime patches), подобно токенизации в больших языковых моделях (LLM). Это позволяет масштабировать обучение на разнообразном визуальном контенте.

𝟮. 𝗖𝗼𝗺𝗽𝗿𝗲𝘀𝘀𝗶𝗼𝗻 𝗮𝗻𝗱 𝗣𝗮𝘁𝗰𝗵 𝗘𝘅𝘁𝗿𝗮𝗰𝘁𝗶𝗼𝗻: Видео компрессор уменьшает визуальные данные до сжатого латентного пространства, а затем разбивает его на пространственно-временные патчи. Эти патчи являются строительными блоками для обучения и создания контента.

𝟯. 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿-𝗯𝗮𝘀𝗲𝗱 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴: Sora использует трансформеры для обработки пространственно-временных патчей, эффективно улавливая сложные паттерны и динамику генераций. Этот метод использует способность трансформеров обрабатывать большие наборы данных и различные зависимости.

𝟰. 𝗗𝗶𝗳𝗳𝘂𝘀𝗶𝗼𝗻 𝗣𝗿𝗼𝗰𝗲𝘀𝘀: Диффузия используеся для уточнения зашумленных входных данных в детальные видео. Предсказывая лучшие версии патчей с каждой итерацией, Sora генерирует высококачественные видео, руководствуясь текстовыми промптами.

𝟱. 𝗙𝗹𝗲𝘅𝗶𝗯𝗹𝗲 𝗢𝘂𝘁𝗽𝘂𝘁 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝗼𝗻: Благодаря патч-ориентированному подходу Sora генерирует видео различных размеров и форм. Она может настраивать выходной сигнал под конкретные разрешения, соотношения сторон и продолжительность, что делает ее очень адаптируемой.

𝟲. 𝗘𝗺𝗲𝗿𝗴𝗲𝗻𝘁 𝗖𝗮𝗽𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀: Масштабные тренировки Sora привели к появлению свойств, необходимых для генерации качетсвенного 3D-контента  и симуляция взаимодействий.

https://openai.com/research/video-generation-models-as-world-simulators
+1
0
+1
0
+1
0
+1
0
+1
0

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *