Сохранение модели после тестирования в Keras

1. Загрузка данных из kaggle.

Создается 2 файла:

  • train.csv.zip
  • test.csv.zip

Если вы используете Google Colab:

Перетащите файл train.csv.zip в zip

!unzip train.csv.zip
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import keras
import matplotlib.pyplot as plt

from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split

Подготовка данных

train_df = pd.read_csv('/content/train.csv') #might be in other place
train_labels = train_df['label'] #We need Y values - labels
train_labels = train_labels.to_numpy() # nothing smart just convert to numpy array
del train_df['label'] # remove label from original dataframe to use it as X
train_data = train_df.to_numpy()


# we can't use values 1,2,3,4,4,5 for Y
# instead we should use smth like [1,0,0,0,0,0], [0,1,0,0,0,0], ...
y = LabelBinarizer().fit_transform(train_labels) 


#Split train and test data
X_train, X_test, y_train, y_test = train_test_split(train_data, y, test_size=0.1)

2. Скомпилирование нейронной сети.

# Define sequential model

model = keras.Sequential()

# Define the first layer
model.add(keras.layers.Dense(128, activation="relu", input_shape=(784,)))
model.add(keras.layers.Dense(128, activation="relu", input_shape=(128,)))
model.add(keras.layers.Dense(128, activation="relu", input_shape=(128,)))
model.add(keras.layers.Dense(128, activation="relu", input_shape=(128,)))

# Add activation function to classifier
model.add(keras.layers.Dense(10, activation='softmax'))

# Finish the modecl compilation
model.compile('adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Complete the model fit operation

# callbacks=[PlotLossesKeras()] - this is a single magic line of code which draw #live chart
model.fit(train_data, y, epochs=10, validation_data=(X_test, y_test), callbacks=[PlotLossesKeras()], verbose=0)

3. Уменьшение кода

model.save('/content/mynn')

4. Проверка кода

test_model = keras.models.load_model('/content/mynn')

5. Тестирование

test_df = pd.read_csv('/content/mnist_test.csv') #might be in other place
test_labels = test_df['label'] #We need Y values - labels
test_labels = test_labels.to_numpy() # nothing smart just convert to numpy array
del test_df['label'] # remove label from original dataframe to use it as X
test_data = test_df.to_numpy()

Визуализация случайного случайного объекта

img = test_data[3].reshape(28,28)
plt.imshow(img)
download.png
//we make a trick with np array to wrap single item into array
// because predict method predicts many values at once
y_proba = test_model.predict(np.array([test_data[3]]))
y_classes = y_proba.argmax(axis=-1)
y_classes
+1
0
+1
0
+1
0
+1
0
+1
0

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *